Home
Class 12
MATHS
vec A B=3 hat i- hat j+ hat ka n d vec C...

` vec A B=3 hat i- hat j+ hat ka n d vec C D=-3 hat i+2 hat j+4 hat k` are two vectors. The position vectors of the points `Aa n dC` are `=6 hat i+7 hat j+4 hat ka n d=-9 hat j+2 hat k` respectively. Find the position vector of a point `P` on the line `A B` and a point `Q` on the line `C D` such that ` vec P Q` is perpendicular to ` vec A Ba n d vec C B` both.

Promotional Banner

Similar Questions

Explore conceptually related problems

vec [AB]=3hat i+ hat j+ hat k and vec [CD]= -3hat i+2 hat j+4 hat k are two vectors. The position vectors of points A and C are 6 hat i+ 7 hat j+ 4 hat k and -9 hat j +2 hat k respectively. Find the position vector of point P on the line AB and point Q on the line CD such that vec [PQ] is perpendicular to vec [AB] and vec [CD] both.

If vec a=3 hat i-2 hat j+ka n d vec b=2 hat i-4 hat j-3k , find | vec a-2 vec b|dot

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

The position vectors of the vertices A ,B ,a n dC of a triangle are hat i+ hat j , hat j+ hat ka n d hat i+ hat k , respectively. Find the unite vector hat r lying in the plane of A B C and perpendicular to I A ,w h e r eI is the incentre of the triangle.

The position vectors of the vertices A ,B ,a n dC of a triangle are hat i+ hat j , hat j+ hat ka n d hat i+ hat k , respectively. Find the unit vector hat r lying in the plane of A B C and perpendicular to I A ,w h e r eI is the incentre of the triangle.

The position vectors of the vertices A ,B ,a n dC of a triangle are hat i+ hat j , hat j+ hat ka n d hat i+ hat k , respectively. Find the unite vector hat r lying in the plane of A B C and perpendicular to I A ,w h e r eI is the incentre of the triangle.

The position vectors of the points P ,\ Q ,\ R are hat i+2 hat j+3 hat k ,\ -2 hat i+3 hat j+5 hat k\ a n d\ 7 hat i- hat k respectively. Prove that P ,\ Q\ a n d\ R are collinear points.

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat ka n d vec b=3 hat i-2 hat j+2 hat kdot

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot Then find [vec a vec b vec c]