Home
Class 12
MATHS
If y = tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(s...

If `y = tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]` then prove that `dy/dx = 1/(2 sqrt(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))