Home
Class 12
MATHS
If |2z-4-2i|=|z| sin (pi/4 -arg z) then ...

If `|2z-4-2i|=|z| sin (pi/4 -arg z)` then the locus of z represents a conic where eccentricity e is

Promotional Banner

Similar Questions

Explore conceptually related problems

If abs(z-2-i)=abszabssin(pi/4-argz) then locus of z is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If Arg (3z-2i) = pi//2 then the locus of z = x +iy is

If arg((z-3+4i)/(z+2-5i))=(5 pi)/(6), then locus of z represents .........

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is