Home
Class 12
MATHS
Points vec a , vec b , vec c ,a n d vec...

Points ` vec a , vec b , vec c ,a n d vec d` are coplanar and `(sinalpha) vec a+(2sin2beta) vec b+(3sin3gamma) vec c- vec d=0.` Then the least value of `sin^2alpha+sin^2 2beta+sin^2 3gammai s` a. `1/(14)` b. `14` c. `6` d. `1//sqrt(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Points vec a,vec b,vec c, and vec d are coplanar and (sin alpha)vec a+(2sin2 beta)vec b+(3sin3 gamma)vec c-vec d=0 Then the least value of sin^(2)alpha+sin^(2)2 beta+sin^(2)3 gamma is a.(1)/(14) b.14c.6d1/sqrt(6)

4-points whose position Vectors vec a,vec b,vec c and vec d are coplanar and (sin alpha)vec a+(2sin2 beta)vec b+(3sin gamma)vec c-vec d=vec 0 then the least value of sin^(2)alpha+sin^(2)2 beta+sin^(2)3 gamma is

If vec a , vec b ,a n d vec c are mutually perpendicular vectors and vec a=alpha( vec axx vec b)+beta( vec bxx vec c)+gamma( vec cxx vec a)a n d[ vec a vec b vec c]=1, then find the value of alpha+beta+gammadot

vec a xx (vec b xxvec c) + (vec a * vec b) vec b = (4-2 beta-sin alpha) vec b + (beta ^ (2) -1) vec c and (vec c * vec c) vec a = vec c, vec b, vec c being non-collinear then

vec a xx (vec b xxvec c) + (vec a * vec b) vec b = (4-2 beta-sin alpha) vec b + (beta ^ (2) -1) vec c and (vec c * vec c) vec a = vec c, vec b being non-collinear then

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

Prove that four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+4 vec b-2 vec c and vec a-6 vec b+6 vec c are coplanar.

If vec a= vec b+ vec c , vec b X vecd= vec0 and vec c*vec d=0 then ( vec dx( vec ax vec d))/( vec d^2) is equal to (a) vec a (b) vec b (c) vec c (d) vec d