Home
Class 12
MATHS
The given expression f(x)=1/(tan x + cot...

The given expression `f(x)=1/(tan x + cotx + sec x + cosecx)` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The given expression f(x)=(1)/(tanx+cotx+secx+"cosec x") is equivalent to

Expression (tan x)/(1 + sec x)- (tan x)/(1 -sec x) is equal to:

What is the expression (tan x )/( 1 + sec x) - (tan x)/( 1 - sec x) equal to ?

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

The expression (cotx+cosecx-1)/(cotx-cosecx+1) is equal to:

For any real number x ge 1 , the expression sec^(2)x ( tan^(-1)x) - tan^(2)x ( sec^(-1) x) is equal to

Integration of trigonometric expression (tanx; cotx; secx; cosecx)