Home
Class 12
MATHS
" 5.एक रित्बा का कार्ताय समीकरण "(x+2)/(...

" 5.एक रित्बा का कार्ताय समीकरण "(x+2)/(1)=(y-3)/(-2)=(z)/(3)" है। "

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines x/2=y/1=z/3 and (x-2)/(2)=(y+1)/(1)=(3-z)/(-3) are ….

Find the S.D. between the lines : (i) (x)/(2) = (y)/(-3) = (z)/(1) and (x -2)/(3) = (y - 1)/(-5) = (z + 4)/(2) (ii) (x -1)/(2) = (y - 2)/(3) = (z - 3)/(2) and (x + 1)/(3) = (y - 1)/(2) = (z - 1)/(5) (iii) (x + 1)/(7) = (y + 1)/(-6) = (z + 1)/(1) and (x -3)/(1) = (y -5)/(-2) = (z - 7)/(1) (iv) (x - 3)/(3) = (y - 8)/(-1) = (z-3)/(1) and (x + 3)/(-3) = (y +7)/(2) = (z -6)/(4) .

If x+y+z=xyz , prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) cdot(3y-y^3)/(1-3y^2)cdot(3z-z^3)/(1-3z^2)

If x+y+z=xyz , show that : (3x-x^3)/(1-3x^2) + (3y-y^3)/(1-3y^2) + (3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) . (3y-y^3)/(1-3y^2) . (3z-z^3)/(1-3z^2)

If x +y+ z=xyz , prove that : (3x-x^3)/(1-3x^2)+ (3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)= (3x-x^3)/(1-3x^2). (3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2) .

If x+y+z=xyz then prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)=(3x-x^3)/(1-3x^2).(3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2)

The graphs of the equations 2x+3y=11 and x-2y+12=0 intersects at P(x_1,y_1) and the graph of the equation x-2y+12=0 intersects the x-axis at Q(x_2,y_2) . What is the value of (x_1-x_2+ y_1+y_2) ? समीकरणों 2x+3y=11 तथा x-2y+12=0 के आरेख एक दूसरे को P(x_1,y_1) पर काटते ह तथा समीकरण x-2y+12=0 का आरेख x-अक्ष को Q(x_2,y_2) पर काटता है| (x_1-x_2+ y_1+y_2) का मान क्या है?

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

The angle between the lines (x+4)/1=(y-3)/2=(z+2)/3 and x/3=(y-1)/(-2)=z/1 is (x-2)/3=(y+1)/(-2),z=2 and (x-1)/1=(2y+3).3=(z+5)/2 is

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .