Home
Class 12
MATHS
If omega!=1 is n^(t h) root of unity, ...

If `omega!=1` is `n^(t h)` root of unity, then value of `sum_(k=0)^(n-1)|z_1+omega^k z_2|^2i s` (a)`n|z_1|^2+|z_2|^2)` (b) `|z_1|^2+|z_2|^2` (c)`(z_1"|"+|z_2|)^2` (d) `n(|z_1|+|z_2|)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega!=1 is n^(th) root of unity,then value of sum_(k=0)^(n-1)|z_(1)+omega^(k)z_(2)|^(2)is(a)n|z_(1)|^(2)+|z_(2)|^(2))(b)|z_(1)|^(2)+|z_(2)|^(2)(c)(z_(1)|+|z_(2)|)^(2)(d)n(|z_(1)|+|z_(2)|)^(2)

The omega!= 1 is nth root unity, then value of sum_(k=0)^(n-1)|z_1+omega^k z_2|^2 is n(|z_1|^2+|z_2|^2) b. |z_1|^2+|z_2|^2 c. (|z_1|+|z_2|)^2 d. n(|z_1|+|z_2|)^2

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then prove that . Sigma_(k=0)^(n-1)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then prove that . Sigma_(k=0)^(n-1)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then prove that . Sigma_(k=0)^(n-1)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then probe that . Sigma_(n-1)^(k=0)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

If z_(1) and z_(2) are two n^(th) roots of unity, then arg (z_(1)/z_(2)) is a multiple of

If z_(1) and z_(2) are two n^(th) roots of unity, then arg (z_(1)/z_(2)) is a multiple of

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

If omega ne 1 is a cube root of unity and |z-1|^(2) + 2|z-omega|^(2) = 3|z - omega^(2)|^(2) then z lies on