Home
Class 9
MATHS
यदि m^(4) + (1)/(m^(4)) = 194, तब m^(3) ...

यदि `m^(4) + (1)/(m^(4)) = 194`, तब `m^(3) + (1)/(m^(3)), m^(2) + (1)/(m^(2))` व `m + (1)/(m)` के मान ज्ञात कीजिए ।

Promotional Banner

Similar Questions

Explore conceptually related problems

If m+ (1)/(m-2)=0 , find m^(5) + m^(4) + m^(3) + m^(2)+ m+1 = ?

If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1 =?

If 3m -(1)/(3m) = 3, m ne 0 , then m^(2) + (1)/(81 m^(2)) is equal to

If 3m - (1)/(3m) = 3, m ne 0 , then m^(2) + (1)/(81 m^(2)) is equal to

If m+ (1)/(m-2)=4 , find m^(2) + m+1 =?

If m+(1)/(m-2)=4 then (m-2)^(2)+(1)/((m-2)^(2))=

If m+ (1)/(m-2)=4 , find (m-2)^(111) + (1)/((m-2)^(111))= ?

If the value of m^(4)+(1)/(m^(4))=119 then the value of |m^(3)-(1)/(m^(3))|=