Home
Class 12
MATHS
If k>0, |z|=|w|=k, and alpha=(z-bar(w))/...

If `k>0`, `|z|=|w|=k`, and `alpha=(z-bar(w))/(k^2+zbar(w))`, `Re(alpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=\w\=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0,|z|=backslash w backslash=k, and alpha=(z-bar(w))/(k^(2)+zbar(w)) then Re(alpha)(A)0(B)(k)/(2)(C)k(D) None of these

Let z and w are two non zero complex number such that |z|=|w|, and Arg(z)+Arg(w)=pi then (a) z=w( b) z=bar(w)(c)bar(z)=bar(w)(d)bar(z)=-bar(w)

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

Suppose z is a complex number such that z ne -1, |z| = 1 and arg(z) = theta . Let w = (z(1-bar(z)))/(bar(z)(1+z)) , then Re(w) is equal to

Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) = theta . Let omega = (z(1-bar(z)))/(bar(z)(1+z)) , then Re (omega) is equal to