Home
Class 12
MATHS
Prove that the straight line lx+my+n=0 t...

Prove that the straight line lx+my+n=0 touches the parabols `y^2=4ax`, if `ln=am^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 touches the parabola y^(2)=4ax, prove that ln=am^(2)

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the straight line lx+my+n=0 touches the : parabola y^(2)=4ax , prove that am^(2)=nl

The condition that the line lx+my+n=0 to touch the parabola y^(2)=4ax is

The line lx + my + n = 0 will touch the parabola y^(2) = 4ax if am^(2) = nl .

The line lx+my+n=0 is a normal to the parabola y^(2)=4ax if