Home
Class 12
MATHS
lim(x rarr-1)(1)/(sqrt(|x|-{x^(2)))=...

lim_(x rarr-1)(1)/(sqrt(|x|-{x^(2)))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr1)(x-1)/(sqrt(x^(2)+3)-2)

Lim_(x rarr-1)(x+1)/(sqrt(x^(2)+3-2))= 1) -2 2) 1/2 3) 2 4) 0

lim_(x rarr1)(x-1)/(sqrt(x)-1)=

lim_(x rarr1)((x-1)/(sqrt(x^(2)-1)+sqrt(x-1)))=

lim_(x rarr0)(x)/(sqrt(1+x))-1

lim_(x rarr0)(x)/(1-sqrt(1-x))

lim_(x rarr0)(x)/(1-sqrt(1-x))

lim_(x rarr 1)(x-1)/(sqrt(x+3)+2)=

Find, lim_(x rarr0)(1-sqrt(1-x^(2)))/(x^(2))

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))