Home
Class 12
MATHS
If i=sqrt(-1), w is non real cube root o...

If `i=sqrt(-1)`, `w` is non real cube root of unity then `((1+i)^(2n)-(1-i)^(2n))/((1+w^4-w^2)(1-w^4+w^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If i=sqrt(-1), omega is a non real cube root of unity then ((1+i)^(2 n)-(1-i)^(2 n))/((1+omega-omega^(2))(1-omega+omega^(2)))=

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(2)) is equal to

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=

If 1, w, w^(2) are three cube roots of unity, then (1 - w+ w^(2)) (1 + w-w^(2)) is _______

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))

If w be an imaginary cube root of unity,show that 1+w^(n)+w^(2n)=0, for n=2,4

If w is an imaginary cube root of unity then prove that (1-w+w^2)(1-w^2+w^4)(1-w^4+w^8)....... " to " 2n "factors" =2^(2n) .

If i=sqrt(-1) and omega is a non-real cube root of unity,then the value of omega-omega^(2)quad 1+iquad omega^(2) is

If (omega ne1) is a cube root of unity , then {:(1 , 1 + i+ omega^(2) , omega^(2)) , (1-i, -1 , omega^(2) -1) , (-i , -1 + omega - i, -1):}|