Home
Class 11
MATHS
यदि f(x) = x + (1)/(x), तो सिद्ध कीजिए क...

यदि `f(x) = x + (1)/(x)`, तो सिद्ध कीजिए कि `{f(x)}^(3) = f(x^(3)) + 3 * f((1)/(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x),=x+(1)/(x), prove that [f(x)]^(3),=f(x^(3))+3f((1)/(x))dots

If f(x)=x^(3)-(1)/(x^(3)) show that f(x)+f((1)/(x))=0

If f(x)=(1)/(3)x + 3 , then f^(-1)(x)=

If f(x)=x+(1)/(x) , such that [f(x)]^(3)=f(x)^(3)+lambdaf((1)/(x)) , then lambda=

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

If f(x) = (x+2)/(3x-1) then f (f(x)) is