Home
Class 11
MATHS
The position vectors of A, B,C and D are...

The position vectors of A, B,C and D are `vec a , vec b` , `vec 2a+ vec 3b` and `vec a - vec 2b` respectively show that `vec DB=3 vec b -vec a` and `vec AC =vec a + vec 3b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C,D are the points with position vectors vec a , vec b , 3 vec a+ 2 vec b and vec a- 2 vec b respectively , show that vec AC = 2 vec a + 2 vec b and vec DB= 3 vec b - a .

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

The position vector of A,B are vec a and vec b respectively.The position vector of C is (5(vec a)/(3))-vec b then

Find |vec a| and |vec b| if (vec a + vec b).(vec a - vec b) = 3 and 2|vec b| = |vec a| .

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

If vec c=3vec a+ 4vec b and 2vec c=vec a-vec 3b then show that vec c and vec a are like vectors and |quad vec c|>|quad vec a| .

Find | vec a- vec b|, if two vector vec a and vec b are such that | vec a|=2,| vec b|=3 and vec adot vec b=4 .

Find |vec a - vec b| , if two vectors vec a and vec b are such that |vec a | = 2, |vec b| = 3 and vec a.vec b = 4 .

If two vectors vec a and vec b such that |vec a|=2, |vec b|= 3 and vec a.vec b = 4 , find |vec a - vec b|

If vec a, vec b, vec c are unit vectors satisfying the condition veca+ vec b+ vec c= 0 then show that vec a. vec b+ vec b.vec c+ vec c. vec a= -3//2 .