Home
Class 12
MATHS
" Prove that "[1,a^(2),a^(3)],[1,b^(2),b...

" Prove that "[1,a^(2),a^(3)],[1,b^(2),b^(3)],[1,c^(2),c^(3)]|=([a-b)(b-c)(c-a)],[ab+bc+ca])

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that det[[1,a^(2)+bc,a^(3)1,b^(2)+ca,b^(3)1,c^(2)+ca,c^(3)]]=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))det[[1,b^(2)+ca,b^(3)1,c^(2)+ca,c^(3)]]=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

Show that |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}| =(a-b)(b-c)(c-a)(ab+bc+ca)

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

prove that , |{:(a,a^2,a^3+bc),(b,b^2,b^3+ca),(c,c^2,c^3+ab):}|=(a-b)(b-c)(c-a)(abc+bc+ca+ab)

Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

|(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

Prove that . |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|=0

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]