Home
Class 11
MATHS
" 16."(a+b)/(c)=(cos((A-B)/(2)))/(sin(C)...

" 16."(a+b)/(c)=(cos((A-B)/(2)))/(sin(C)/(2))" [NCERT] "

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

(sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))(cos A)/(2)(cos B)/(2)(cos C)/(2) then lambda=

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

(cos ^(2) ((B-C)/( 2)) )/( (b+c)^(2))+( sin ^(2)((B-C)/( 2)) )/( (b-c)^(2))=

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to