Home
Class 12
MATHS
Consider I1=int0^(pi/4)e^x^2dx ,I2=int0^...

Consider `I_1=int_0^(pi/4)e^x^2dx ,I_2=int_0^(pi/4)e^x dx ,I_3=int_0^(pi/4)e^x^2cosxdx ,I_4=int_0^(pi/4)e^x^2sinxdxdot` STATEMENT 1 : `I_2> I_1> I_3> I_4` STATEMENT 2 : For `x in (0,1),x > x^2a n dsinx >cosxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider I_1=int_0^(pi//4)e^(x^2)dx ,I_2=int_0^(pi//4)e^x dx ,I_3=int_0^(pi//4)e^(x^2)cosxdx , I_4=int_0^(pi//4)e^(x^2)sinxdx . STATEMENT 1 : I_2> I_1> I_3> I_4 STATEMENT 2 : For x in (0,1),x > x^2a n dsinx >cosx .

Consider I_1=int_0^(pi//4)e^(x^2)dx ,I_2=int_0^(pi//4)e^x dx ,I_3=int_0^(pi//4)e^(x^2)cosxdx , I_4=int_0^(pi//4)e^(x^2)sinxdx . STATEMENT 1 : I_2> I_1> I_3> I_4 STATEMENT 2 : For x in (0,1),x > x^2a n dsinx >cosx .

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

If I_1=int_0^1 2^(x^2)dx , I_2=int_0^1 2^(x^3) dx , I_3= int_1^2 2^(x^2) dx , I_4=int_1^2 2^(x^3)dx then

I=int_0^4(x^2+2x+4)dx

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then