Home
Class 11
MATHS
f(x)=(x)/(e^(x)-1)+(x)/(2)+1...

f(x)=(x)/(e^(x)-1)+(x)/(2)+1

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

Compute f'(0^(+)) if f(x)=(x(e^(1/x)-1))/(e^(1/x)+1) :

f(x)=(e^(2x)-1)/(e^(2x)+1) is

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

A function y=f(x) satisfies (x+1)f'(x)-2(x^(2)+x)f(x)=((e^(x))^(2))/((x+1)),AA x>1 If f(0)=5, then f(x) is