Home
Class 12
MATHS
underset( x rarr 1) ( "Lim") ( tan "" ( ...

`underset( x rarr 1) ( "Lim") ( tan "" ( pi x)/( 4))^(tan""( pix)/( 2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The limit underset( x rarr a ) ("Lim") (2 -( a)/(x))^(tan ((pix)/( 2a))) is equal to

the value of lim_(x rarr1)((tan(pi x))/(4))^((tan(pi x))/(2))

lim_(x rarr 1) (1-x) tan (pi/2 x) =

Evaluate : underset(xrarr1)"lim"(1-x)"tan"(pix)/(2)

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

lim_ (x rarr1) (2-x) ^ (tan ((pi x) / (2)))

underset( x rarroo)("lim") x {tan^(-1) ((x+1)/( x+2))-pi //4}=

Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x

lim_(x rarr 1) (x-1) tan((pi x)/2)

lim_(x rarr 1) (1-x) tan((pi x)/2)