Home
Class 12
MATHS
The value of int0^pi (sin(1+1/2)x)/(sin ...

The value of `int_0^pi (sin(1+1/2)x)/(sin (x/2)) dx` is, (a) `n in I, n >= 0 pi/2` (b) `0` (c) `pi` (d) `2pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

The value of int_(0)^(pi)(sin(n+1/2)x)/(sin(x/2))dx is

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, n in I (a) pi/2 (b) 0 (c) pi (d) 2pi

The value of int_(0)^( pi)(sin(1+(1)/(2))x)/(sin((x)/(2)))dx is,(a) n in I,n>=0(pi)/(2)(b)0(c)pi(d)2 pi

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

int_0^pi (x sin x)/(1+sin x) dx=pi/2 (pi-2)

int_0^(2pi) sqrt(1 + sin( x/2)) dx is :

The value of int_0^(2pi)sqrt(1+sin (x/2)dx is a. 0 b. 4 c. 2 d. 8

The value of int_0^(2pi)sqrt(1+sin (x/2)dx is 0 b. 4 c. 2 d. 8

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi