Home
Class 12
MATHS
यदि (log x)/(b-c) = (log x)/(c-a) = (log...

यदि `(log x)/(b-c) = (log x)/(c-a) = (log z)/(a-b)` हो , तो निम्न प्रश्नो के उत्तर दीजिए ।
xyz का मान है

Promotional Banner

Similar Questions

Explore conceptually related problems

(log x)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b')

If log x/(b-c) =logy/(c-a) = logz/((a-b) then the value of xyz is

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then a^(a)*b^(b)*c^(c)=

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then which of the following is/are true?

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1