Home
Class 12
MATHS
If n>1, then int0^oo(dx)/((x+sqrt(1+x^2)...

If n>1, then `int_0^oo(dx)/((x+sqrt(1+x^2))^n)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(oo) (dx)/((x+sqrt(x^(2)+1))^(3))=

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

if ngt1 and I=int_0^infty dx/((x+sqrt(1+x^2))^n then I equals

int _(0)^(oo) (dx)/((x+ sqrt(x^(2)+1))^(3)) is equal to

int_0^1 1/(sqrt(1-x^2))dx is equal to :

Show that int_(0)^(oo) (dx)/((x+sqrt(1+x^(2)))^(n))=(n)/(n^(2)-1), (n in N, n gt 1)