Home
Class 12
MATHS
" If "y=e^(x+e^(x+e^(x+...))" to "oo)," ...

" If "y=e^(x+e^(x+e^(x+...))" to "oo)," prove that "(dy)/(dx)=(y)/((1-y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y=e^(x+e^(x+e^(x+dotto\ oo))) , show that (dy)/(dx)=y/(1-y) .

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

Differentiate the following w.r.t.x. y = e^(x^(+ex + ex^(-"to" oo))), prove that (dy)/(dx) = y/(1 - y)

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If y=e^(x+e^(x+e^((((( tooo))))))), show that (dy)/(dx)=y/(1-y)

If y=e^(x)+e^(x)+e^(((x+rarr oo))), show that (dy)/(dx)=(y)/(1-y)

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2