Home
Class 12
MATHS
" (25) If "x^(y)=e^(x-y)," then show tha...

" (25) If "x^(y)=e^(x-y)," then show that "(dy)/(dx)=(log x)/((1+log x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

IF x^y=e^(x-y) then show that (dy)/(dx)=(logx)/[log(xe)]^2 .