Home
Class 11
MATHS
Comprehension (Q. No. 6 to Q. No. 8) Let...

Comprehension (Q. No. 6 to Q. No. 8) Let `(x_1, y_1)&(x_2, y_2)` are the solutions of the equation, `(log)_(225)(x)+(log)_(64)(y)=4` and `(log)_x(225)-(log)_y(64)=1` `(log)_(225)x_1dot(log)_(225)x_2=` 2 (b) 4 (c) 6 (d) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x_1, y_1)&(x_2, y_2) are the solutions of the equaltions, (log)_(225)(x)+log_(64)(y)=4a n d(log)_x(225)-(log)_y(64)=1, (log)_(225)x_1dot(log)_(225)x_2=4 b. (log)_(225)x_1+(log)_(225)x_2=6 c. |(log)_(64)y_1-(log)_(64)y_2|=2sqrt(5) d. (log)_(30)(x_1x_2y_1y_2)=12

If (x_1, y_1)&(x_2, y_2) are the solutions of the equaltions, (log)_(225)(x)+log_(64)(y)=4a n d(log)_x(225)-(log)_y(64)=1, (A) (log)_(225)x_1dot(log)_(225)x_2=4 (B). (log)_(225)x_1+(log)_(225)x_2=6 (C). |(log)_(64)y_1-(log)_(64)y_2|=2sqrt(5) (D). (log)_(30)(x_1x_2y_1y_2)=12

If (x_(1),y_(1)) and (x_(2),y_(2)) are the solution of the system of equation log_(225)(x)+log_(64)(y)=4 and log_(x)(225)-log_(y)(64)=1, then show that the value of log_(30)(x_(1)y_(1)x_(2)y_(2))=12

If (x_(1),y_(1))&(x_(2),y_(2)) are the solutions of the equaltions,log_(225)(x)+log_(64)(y)=4 and log_(x)(225)-log_(y)(64)=1log_(225)x_(1).log_(225)x_(2)=4 b.log_(225)x_(1)+log_(225)x_(2)=6c|log_(64)y_(1)-log_(64)y_(2)|=2sqrt(5)d*log_(30)(x_(1)x_(2)y_(1)y_(2))=12

IF y' = y/x(log y - log x+1), then the solution of the equation is :

IF y' = y/x(log y - log x+1), then the solution of the equation is :

The solutions to the system of equations log_(5)x+log_(27)y=4 and log_(x)5-log_(y)(27)=1 are (x_(1),y_(1)) and (x_(2),y_(2)) then log_(15)(x_(1)x_(2)y_(1)y2) is

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1 ,then x equals (a) 4 (b) 8 (c) 16 (d) 64

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1,t h e nxe q u a l s 4 (b) 8 (c) 16 (d) 64

Solve the following equation for x\ &\ y :(log)_(100)|x+y|=1/2,(log)_(10)y-(log)_(10)|x|=log_(100)4.