Home
Class 12
MATHS
Statement -1 The maximum value of f(x)=1...

Statement -1 The maximum value of `f(x)=1/(3x^4+8x^3-18x^2+60) "is"1/(53)`
Statement -2 : The function g(x) =`1/(f(x))` attains its minimum value at x=1 and x=-3

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

The minimum value of f(x)=2x^2+3x+1 is

Let f(x)={(|x^3+x^2+3x+sinx|(3+sin"1/x),x!=0),(0,x=0):} then number of points (where f(x)attains its minimum value) is

The maximum and minimum values for the funtion f(x)= 3x^4-4x^3 on [-1,2] are

The maximum and minimum values for the funtion f(x)= 3x^4-4x^3 on [-1,2] are

The maximum value of the function f(x)=(x^(4)-x^(2))/(x^(6)+2x^(3)-1) where x>1 is equal to:

The maximum value of the function f(x)=[x(x-1)+1]^((1)/(3)) ; x in [0,1] is