Home
Class 11
MATHS
If x=1+loga (bc);y=1+logb(ac);z=1+logc (...

If `x=1+log_a (bc);y=1+log_b(ac);z=1+log_c (ab)` then prove that `xyz=xy+yz+zx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

If x=1 + log_(a)(bc) , y=1 +log_(b)(ca) and z=1+ log_(c )(ab) prove that xy+yz+zx=xyz

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x

IF x=1+log_abc,y=1+log_bca,z=1+log_cab , prove that xyz=xy+yz+zx.

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]