Home
Class 11
MATHS
If (loga N)/(logc N)=(loga N-logb N)/(lo...

If `(log_a N)/(log_c N)=(log_a N-log_b N)/(log_b N-log_c N)` where N>0 and N`!=`1 a,b,c>0 and not equal to 1 , then prove that ` b^2=ac`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N), where N >0 and N!=1, a , b , c >0,!=1 , then prove that b^2=a c

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

The value of a^((log_b(log_b N))/(log_b a)), is

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

log_(x rarr n)-log_(a)y=a,log_(a)y-log_(a)z=b,log_(a)z-log_(a)x=c