Home
Class 11
MATHS
" The "sum^(20)C(0)+^(20)C(1)+^(20)C(2)+...

" The "sum^(20)C_(0)+^(20)C_(1)+^(20)C_(2)+...+^(20)C_(10)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

sum_(k=0)^(20)(.^(20)C_(k))^(2) is equal to

1.^(20)C_(1)-2.^(20)C_(2)+3.^(20)C_(3)-...-20.^(20)C_(20)

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

let 2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20) . Then sum of this series is