Home
Class 12
MATHS
" fiti) "f(x)={[(x-a)sin((1)/(x-a)),x!=a...

" fiti) "f(x)={[(x-a)sin((1)/(x-a)),x!=a" at "x=a],[0],x=a

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin((1)/(x)), then at x=0

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

f(x) = (x - [x]) sin ((1)/(X)) , at x = 0 , f is

f(x)={|x-a|sin((1)/(x-a)),quad f or x!=a0,quad f or x= at x=a

If f(x)=x sin((1)/(x)),x!=0 and f(x)=0,x=0 then show that f'(0) does not exist

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then

Prove that f(x)={x sin((1)/(x)),x!=0,0,x=0 is not differentiable at x=0

If f(x)=x sin(1/x), x!=0 then (lim)_(x->0)f(x)=