Home
Class 11
MATHS
Assertion : Given that prod(i=1)^n ai=1w...

Assertion : Given that `prod_(i=1)^n a_i=1`where `a_1 ,a_2,a_3 a_i in R` then minimum value of `sum_(i=1)^n a_i` is n Reason : The arithmetic mean of n positive integers is greater than or equal to their geometric mean.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

a_1, a_2, a_3 …..a_9 are in GP where a_1 lt 0, a_1 + a_2 = 4, a_3 + a_4 = 16 , if sum_(i=1)^9 a_i = 4 lambda then lambda is equal to

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

Let a_1,a_2,a_3,.... are in GP. If a_n>a_m when n>m and a_1+a_n=66 while a_2*a_(n-1)=128 and sum_(i=1)^n a_i=126 , find the value of n .

If f(x)= prod_(i=1)^3 (x-a_i) +sum_(i=1)^3a_i-3x where a_i lt a_(i+1) forall i=1,2,. . . then f(x)=0 has

Let f_1 : (0, oo) to R and f_2 : (0, oo) to R be defined by f_1(x) = int_0^xprod_(j= 1)^21((t − j)^j)dt, x gt 0 and f_2(x) = 98(x − 1)^50 − 600(x − 1)^49 + 2450, x gt 0 , where, for any positive integer n and real numbers a_1, a_2, … , a_n, prod_(i=1)^n(a_i) denotes the product of a_1 , a_2, … , a_n . Let m_i and n_i , respectively, denote the number of points of local minima and the number of points of local maxima of function f_i, i = 1, 2 , in the interval (0, oo) The value of 2m_1+3n_1+m_1n_1 is ___.