Home
Class 9
MATHS
" If "a,b,c" are all non-zero and "a+b+c...

" If "a,b,c" are all non-zero and "a+b+c=0," prove that "(a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)=3" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

if a,and c are all non zero and a+b+c=0 , then prove that (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3.

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a,b,c are all non-zeros ,a+b+c=0 prove (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3

If a+b+c=0 , then prove that a^2/(bc)+b^2/(ca)+c^2/(ab)=3

if a, and c are all non zero and a+b+c=0 , then find the value of (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)

If a,b,c are non-zero real numbers and a+b+c=0, then the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is (A)0(B)2(D)4(C)3

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3

Prove that |(1/a^(2),bc,b+c),(1/b^(2),ca,c+a),(1/c^(2), ab, a+b)|=0