Home
Class 12
MATHS
" of "quad %quad t(0)^(TT)x+t(u)^(-1)y+t...

" of "quad %quad t_(0)^(TT)x+t_(u)^(-1)y+t_(u)^(-1)=pi" -lhen Prove thet "x+y+z=xyz

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

if tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan^-1 x+tan^-1 y+tan^-1 z=pi , prove that x+y+z=xyz

If Tan^(-1) x + Tan^(-1) y + Tan^(-1) z = pi then prove that x+y+z = xyz .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n prove t h a t x^2+y^2+z^2+2x y z=1

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz