Home
Class 11
MATHS
A line of slope lambda(0 lt lambda lt 1)...

A line of slope `lambda(0 lt lambda lt 1)` touches the parabola `y+3x^2=0` at `P`. If `S` is the focus and `M` is the foot of the perpendicular of directrix from `P` , then `tan/_M P S` equals (A) `2lambda` (B) `(2lambda)/(-1+lambda^2)` (C) `(1-lambda^2)/(1+lambda^2)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

A line of slope lambda(0 < lambda < 1) touches the parabola y+3x^2=0 at Pdot If S is the focus and M is the foot of the perpendicular of directrix from P , then tan/_M P S equals

A line of slope lambda(0 < lambda < 1) touches the parabola y+3x^2=0 at Pdot If S is the focus and M is the foot of the perpendicular of directrix from P , then tan/_M P S equals (a) 2lambda (b) (2lambda)/(-1+lambda^2) (c) (1-lambda^2)/(1+lambda^2) (d) none of these

A line of slope lambda(0

If x+y+1 = 0 touches the parabola y^(2) = lambda x , then lambda is equal to

If x+y+1=0 touches the parabola y^(2)=lambda x then lambda=

The circle x^2+y^2+2lambdax=0,lambda in R , touches the parabola y^2=4x externally. Then, (a) lambda>0 (b) lambda 1 (d) none of these

The circle x^2+y^2+2lambdax=0,lambda in R , touches the parabola y^2=4x externally. Then, (a) lambda>0 (b) lambda 1 (d) none of these

If the sum of the slopes of the normal from a a point P to the hyperbola xy=c^(2) is equal to lambda(lambda in R^(+)), then the locus of point P is (a) x^(2)=lambda c^(2)( b) y^(2)=lambda c^(2)( c) xy=lambda c^(2)( d) none of these

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=