Home
Class 12
MATHS
Let d/(dx)F(x)=((e^(sinx))/x),x > 0...

Let `d/(dx)F(x)=((e^(sinx))/x),x > 0.` If `int_1^4 3/x e^sin (x^3)dx=F(k)-F(1),` then one of the possible values of `k ,` is: (a)`15` (b) `16 ` (c)` 63` (d) ` 64`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let d/(dx) F(x) = ((e^(sin x))/(x)) , x > 0 . If int_1^4 3/x e^(sin x^3) dx = F(k) - F(1) , then one of the possible values of k is :

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^(sin x^3)dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

Let (d)/(dx) f(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) 3/x e^(sin(x^(3)))dx=F(k)-F(1) then one of the possible value of k is

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin x^3dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -