Home
Class 11
MATHS
साबित करे कि रेखाओ (a+b)x+(a-b)y-2ab=0,(...

साबित करे कि रेखाओ (a+b)x+(a-b)y-2ab=0,(a-b)x+(a+b)y-2ab=0 और x+y=0 से एक समद्विबाहु त्रिभुज बनता है जिसका शीर्षकों `2tan^(-1)a/b` है |

Promotional Banner

Similar Questions

Explore conceptually related problems

2(a x-b y)+(a+4b)=0 , 2(b x+a y)+(b-4a)=0

(b/a)x+(a/b)y=a^2b^2; x+y=2ab

(a-b)x+ (a+b)y=a^2-2ab-b^2 , (a+b)(x+y)=a^2+b^2 find x and y

Show that the lines (a+b)x+(a-b)y-2ab=0,(a-b)x+(a+b)y-2ab=0andx+y=0 form an isosceles triangle whose vertical angle is 2tan^(-1)((a)/(b)) .

x/a-y/b=0 , a x+b y=a^2+b^2

Triangle formed by variable lines (a+b)x+(a-b)y-2ab=0 and (a-b)x+(a+b)y-2ab=0 and x+y=0 is (where a, b in R )

Triangle formed by variable lines (a+b)x+(a-b)y-2ab=0 and (a-b)x+(a+b)y-2ab=0 and x+y=0 is (where a, b in R )

The lines (a+b)x + (a-b) y-2ab=0, (a-b)x+(a+b)y-2ab = 0 and x+y=0 form an isosceles triangle whose vertical angle is