Home
Class 12
MATHS
Prove that : cos ^(-1) ((1- a^(2))/(1+a...

Prove that : ` cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos ^(-1) ((1- a^(2))/(1+a^2)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .((a+b)/(1-ab))

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is:

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

If ab lt 1 and cos ^(-1) ((1 - a ^(2))/( 1 + a ^(2))) + cos ^(-1) ((1 - b ^(2))/( 1 + b ^(2)))= 2 tan ^(-1)x, then x is equal to

sin^(-1) ""(2a)/(1+a^(2))-cos^(-1) ""(1-b^(2))/(1+b^(2))=2tan ^(-1) ""(a-b)/(1+ab)

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : cos^(-1)b-sin^(-1)a=cos^(-1)(bsqrt(1-a^(2))+asqrt(1-b^(2)))