Home
Class 12
MATHS
If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x...

If `y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2])` and `0 < x < 1,` then find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

If y=cos^(-1){xsqrt(1-x)+sqrt(x)sqrt(1-x^2)} and 0

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to