Home
Class 11
MATHS
If a^(2) + b^(2) = 7ab, show that log((a...

If `a^(2) + b^(2) = 7`ab, show that log`((a + b)/(3)) = (1)/(2)` (log a + log b ).

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) = 23ab , show that : "log" (a+b)/(5) = (1)/(2) (log a + log b) .

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2) + b^(2) = 7 ab , then log (( a + b)/(3 )) equals

If a^(2)+b^(2)=7ab, prove that log((1)/(3)(a+b))=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

log_(x)((a+b)/(2))=(1)/(2)(log a+log_(8)b)

If a^(2)+b^(2)=7ab prove that ((log(a+b))/(3))'=(log a+log b)/(2)

If a^(3)+b^(3)=ab(8-3a-3b) then prove that :log((a+b)/(2))=(1)/(3)(log a+log b)