Home
Class 12
MATHS
If the circle x^2+y^2+8x-4y+c=0 touches ...

If the circle `x^2+y^2+8x-4y+c=0` touches the circle `x^2+y^2+2x+4y-11=0` externally and cuts the circle `x^2+y^2-6x+8y+k=0` orthogonally then `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

If the circles x^(2) + y^(2) - 6x - 8y + 12 = 0 , x^(2) + y^(2) - 4x + 6y + k = 0 cut orthogonally, then k =

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

The radius of the circle which touches the line x+y=0 at M(-1,1) and cuts the circle x^(2)+y^(2)+6x-4y+18=0 orthogonally,is

Find the equation of the circle through the points of interrection of the circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+6x+4y-12=0 and cutting the circle x^(2)+y^(2)-2x-4=0 orthogonally.

Show that the circles x^2 + y^2 - 2x-6y-12=0 and x^2 + y^2 + 6x+4y-6=0 cut each other orthogonally.

Show that the circles x^2 + y^2 - 2x-6y-12=0 and x^2 + y^2 + 6x+4y-6=0 cut each other orthogonally.