Home
Class 12
MATHS
[" 27."Iff "x'y^(x)=1,(dy)/(dx)" arrar "...

[" 27."Iff "x'y^(x)=1,(dy)/(dx)" arrar "(4)/(6)-],[[" (1) "(x(y+x log y))/(y(x+y log x))," (2) "-(x(x+y log y))/(y(y+x log x))],[" (3) "(y(y+x log y))/(x(x+y log x))," (4) "-(y(y+x log y))/(x(x+y log x))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=y^(x) then (dy)/(dx)= ... (A) (y(x log y-y))/(x(y log x-x)) (B) (y(y log x-x))/(x(x log y-y)) (C) (y^(2)(1-log x))/(x^(2)(1-log y)) (D) (y(1-log x))/(x(1-log y))

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .