Home
Class 12
MATHS
The maximum value of the function f(x)=(...

The maximum value of the function `f(x)=(x^(4)-x^(2))/(x^(6)+2x^(3)-1)` where x>1 is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of the function (x-1)(x-2)(x-3)

The maximum value of the function f(x)= x^(2)+2x^(2)-4x+6 exits at

The extremum values of the function f(x)=(1)/(sin x+4)-(1)/(cos x-4), where x in R

The maximum value of the function f(x)=[x(x-1)+1]^((1)/(3)) ; x in [0,1] is

Maximum value of the function f(x) =(x)/(8)+(2)/(x) on the interval [1,6] is

The maximum value of the function f(x)=((1+x)^(0.6))/(1+x^(06)) in the interval [0,1] is 2^(0.4)(b)2^(-0.4)1(d)2^(0.6)

The minimum value of the polynomial function f(x)=(x+1)(x+2)(x+3)(x+4)+2s

The minimum value of the function, f(x)=x^(3//2)+x^(-3//2)-4(x+(1)/(x)). For all permissible real values of x is