Home
Class 11
PHYSICS
A non-conducting sphere of radius R=5cm ...

A non-conducting sphere of radius `R=5cm` has its center at origin `O` of co-ordinate system,shown in figure.It has a spherical cavity of radius `r=1cm` , whose centre is at `(0,3cm)` .Solid material of sphere has uniform positive charge density `rho=(10^(-6))/(pi)colu-m^(-3)` .Assume dielectric.Constant of material to be `1`. The potential at point `p(4cm,0)` is approximately.

Promotional Banner

Similar Questions

Explore conceptually related problems

A nonconducting sphere of radius R = 5 cm has its center at the origin O of the coordinate system as shown in (Fig. 3.112). It has two spherical cavities of radius r = 1 cm , whose centers are at 0,3 cm and 0,-3 cm , respectively, and solid material of the sphere has uniform positive charge density rho = 1 // pi mu Cm^-3 . Calculate the electric potential at point P (4 cm, 0) . .

A non-conducting sphere of radius R has a spherical cavity of radius R//2 as shown. The solid part of the sphere has a uniform volume charge density rho . Find the magnitude and direction of electric field at point (a) O and (b) A.

An insulated charged conducting sphere of radius 5cm has a potential of 10V at the surface. What is the potential at centre?

A solid sphere having uniform charge density rho and radius R is shown in figure. A spherical cavity ofradius (R)/(2) is made in it. What is the potential at point O?

A hollow conducting sphere of radius R has a charge (+Q) on its surface. What is the electric potential within the sphere at a distance r = (R )/(3) from its centre ?

A uniform solid sphere of radius R has a cavity of radius 1m cut from it if centre of mass of the system lies at the periphery of the cavity then

A charged spherical conductor of radius 10 cm has potential V at a point distant 5 cm from its centre. The potential at a point distant 15 cm from the centre will be

A sphere of radius 1 cm has potential of 10000V, then energy density near its surface will be

Distance between centres of two spheres A andB, each of radius R is r as shown in figure -1.450 . SphereB has a spherical cavity of radius R//2 such that distance of centre of cavity is (r-R/2) from the centre of sphere A and R//2 from the centre of sphere B. Di-electric constant of material of each sphere is K = I and material of each sphere has a uniform charge density· p per unit volume. Calculate interaction energy of the two spheres :

If a charged spherical conductor of radius 10 cm has potential V at a point distant 5 cm from its centre, then the potential at a point distant 15 cm from the centre will be