Home
Class 12
MATHS
If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}...

If `f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n)` then `lim_(n to oo)f(n)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)= 1/n {(n+1)(n+2)....2n}^(1//n) then {:(" "Lt),(n rarr oo):} f(n)=

let =(1)/(n*(n+1))+(1)/((n+1)*(n+2))+(1)/((n+2)(n+3))+... terms then lim_(n rarr oo)S_(n) is equal to

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

lim_(n to oo)(n!)/((n+1)!-n!)

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to