Home
Class 12
MATHS
Let f(x)=|cosx x 1 2sinx x2xsinx x x| , ...

Let `f(x)=|cosx x 1 2sinx x2xsinx x x|` , then `(lim)_(x->0)(f(x))/(x^2)` is equal to (a) 0 (b) -1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|[cosx, x, 1], [2sinx ,x,2x],[sinx, x, x]| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|, then lim_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let f(x)=det[[cos x,x,x2sin x,x,2xsin x,x,x]], then lim_(x rarr0)(f(x))/(x^(2)) is equal to (a)0(b)-1(c)2(d)3

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f'(x))/x is equal to

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f(x))/x is equal to

Let f(x)={(sinx^2)/x x!=0 0x=0, then f^(prime)(0^+)+f^(prime)(0^-) has the value equal to (a) 0 (b) 1 (c) 2 (d) None of these

f(x) = |(cosx,x,1),(2 sin x, x^(2),2x),(tan x, x ,1)| . Then value of lim_(xto0)(f'(x))/(x) is equal to a)1 b)-1 c)0 d)None of these

If f(x)=|(cosx, x,1),(2sinx,x^(2),2x),(tanx,x,1)| then Lt_(xto0)(f'(x))/x=