Home
Class 12
MATHS
intsqrt(e^x-1)dxi se q u a lto 2[sqr...

`intsqrt(e^x-1)dxi se q u a lto` `2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c` `sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c` `sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c` `2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

intsqrt(e^x-1)dx is equal to (a) 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c (b) sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c (c) sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c (d) 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c

intsqrt(e^(x)-1)dx= a) 2[sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)]+c b) sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)+c c) sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)+c d) 2[sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)]+c

int sqrt(e^(x)-1)dxi sequa

int(dx)/(e^xsqrt(2e^x-1))= 2sec^(-1)sqrt(2e^x)+c -2tan^(-1)1/(sqrt(2e-1))+c 2sec^(-1)(sqrt(2)e^x)+c (d) (2sqrt(2e^x-1))/2e^x 2tan^(-1)sqrt(2e^x-1)+c

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

int(dx)/(e^(x)sqrt(2e^(x)-1))=2sec^(-1)sqrt(2e^(x))+c-2tan^(-1)(1)/(sqrt(2e-1))+c2sec^(-1)(sqrt(2)e^(x))+c(d)2tan^(-1)sqrt(2e^(x)-1)+c

int(sqrt(x-1))/(xsqrt(x+1))dxi se q u a lto ln|x-sqrt(x^2-1)|-tan^(-1)x+c ln|x+sqrt(x^2-1)|-tan^(-1)x+c ln|x-sqrt(x^2-1)|-sec^(-1)x+c ln|x+sqrt(x^2-1)|-sec^(-1)x+c

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to