Home
Class 12
MATHS
If x=costheta, y=sin5theta then (1-x^2)(...

If `x=costheta, y=sin5theta` then `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x=costheta,y=sin50," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x=costheta,y=sin^3theta,"prove that" y(d^2y)/(dx^2)+((dy)/(dx))^2=3sin^2theta(5cos^2theta-1)dot

If x=costheta , y=s in^3theta , prove that y\ (d^2y)/(dx^2)+((dy)/(dx))^2=3\ s in^2theta(5\ cos^2theta-1) .

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

x = cos theta, y = sin 5 theta implies (1- x ^(2)) (d^(2)y)/(dx ^(2)) -x (dy)/(dx) =

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If x=cos theta and y=sin 5 theta , then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+25y=0

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .