Home
Class 11
MATHS
Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca...

Prove that `|(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

If D=|(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)| , then D is -

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

Without actual expansion, prove that the following determinants vanish: {:|(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)|

|(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|=

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is