Home
Class 12
MATHS
If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y)...

If `log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If logsqrt(x^(2)+y^(2))=tan^(-1)((x)/(y)) , then show that (dy)/(dx)=(y-x)/(y+x) .

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

IF [log (x^2 + y^2) = 2 tan^-1 (y/x)] then show that , dy/dx = (x+y) /(x- y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)

If log sqrt(x^2 + y^2) = tan^-1 (y//x) , then show that dy/dx = (x+y)/(x-y)