Home
Class 10
MATHS
Given that sin A=(1)/(2) and cos B=(1)/(...

Given that `sin A=(1)/(2)` and `cos B=(1)/(2)` ,then the value of `(A+B)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if sin A=(1)/(2) and cos B=(1)/(2) then A+B =

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

If sin A +sin B =2, then the value of cos (A+B) is-

(sin A)/(sin B)=(1)/(3) and (cos A)/(cos B)=2 then the value of 32tan^(2)A= ...

If tan A = (sin B)/(1 - cos B) ,then find the value of tan 2A .

If sin A = (1)/(2) , cos B = 1, 0 lt A, B le (pi)/(2) then find the value of (A + B).

If cos(A-B)=(1)/(2) and sin(A+B)=(1)/(2) then find the smallest value of A and B

If sin A=(1)/(sqrt(5)) and sin B=(1)/(sqrt(10)) ,find the values of cos A and cos B .Hence using the formula cos(A+B)=cos A cos B-sin A sin B, show that (A+B)=45^(@).

If sin (3A-B) = 1 and cos (2A - B) = (sqrt(3))/(2) , then the value of sin A and cos B are .